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Abstract. The document reviews the main properties of the integers, in-

cluding the division algorithm, the Euclidean algorithm, and the Fundamental
Theorem of Arithmetic, as well as giving several examples of proof by induc-

tion. Our primary interest in reviewing this material is to lay the groundwork

for the definition of the modular integers, and to help the develop the analogy
between the integers and polynomials.

1. The Well-Ordering Principle

The natural numbers are the set N = {0, 1, 2, 3, . . . }, as characterized by the five
Peano axioms. The main axiom with which we are concerned is as follows.

Proposition 1. (Peano’s Axiom)
Let S ⊂ N. If

(a) 0 ∈ S, and
(b) n ∈ S ⇒ n + 1 ∈ S,

then S = N.

From this, the Well-Ordering Principle follows.

Proposition 2. (Well-Ordering Principle)
Let X ⊂ N be a nonempty set of natural numbers. Then X contains a smallest,
element; that is, there exists a ∈ X such that for every x ∈ X, a ≤ x.

Proof. Let X ⊂ N and assume that X has no smallest element; we show that
X = ∅. Let

S = {n ∈ N | n < x for every x ∈ X}.
Clearly S ∩X = ∅; if we show that S = N, then X = ∅.

Since 0 is less than or equal to every natural number, 0 is less than or equal to
every natural number in X. Since X has no smallest element, x 6= X, so 0 < x for
every x ∈ X. Thus 0 ∈ S.

Suppose that n ∈ S. Then n < x for every x ∈ X, so n + 1 ≤ x for every x ∈ X.
If n + 1 were in X, it would be the smallest element of X; since X has no smallest
element, n + 1 /∈ X; thus n + 1 6= x for every x ∈ X, whence n + 1 < x for every
x ∈ X. It follows that n + 1 ∈ S, and by Peano’s Axiom, S = N. �
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2. The Induction Principles

Proposition 3. (Induction Principle)
Let {pi | i ∈ N} be a set of propositions indexed by N. Suppose that

(I1) p0 is true;
(I2) pn−1 implies pn, for n > 0.

Then pi is true for all i ∈ N.

Proof. Suppose not, and let n ∈ N be the smallest natural number such that pn is
false. Then n 6= 0, since p0 is true by (I1), so n − 1 exists as a natural number.
Since n− 1 < n, pn−1 is true. By (I2), pn−1 ⇒ pn, so pn is true, contradicting the
assumption. Thus pi is true for all i ∈ N. �

We call (I1) the base case and (I2) the inductive step. We note that by shifting,
we can actually start the induction at any integer. Here is an example demonstrat-
ing proof by induction.

Example 1. Show that 11n − 4n is a multiple of 7 for all n ∈ N.

Proof. A natural number a is a multiple of 7 if and only if a = 7b for some natural
number b. We proceed by induction on n. First we verify the base case, when n = 0,
and then demonstrate the induction step, wherein we show that if the proposition
is true for n− 1, then it is true for n.

(I1) Let n = 0. Then n = 7 · 0, so n is a multiple of 7 in this case. This verifies
the base case.

(I2) Let n > 0, and assume that 11n−1 − 4n−1 is a multiple of 7. Then 11n−1 −
4n−1 = 7k for some k ∈ N. Now compute

11n − 4n = 11n − 11 · 4n−1 + 11 · 4n−1 − 4n

= 11(11n−1 − 4n−1) + 4n−1(11− 4)

= 11 · 7k + 4n−1 · 7
= 7(11k + 4n−1),

which is a multiple of seven.
Thus properties (I1) and (I2) hold, so the proposition is true for all n ∈ N. �

Proposition 4. (Strong Induction Principle)
Let {pi | i ∈ N} be a set of propositions indexed by N. Suppose that

(IS) if pi is true for all i < n, then pn is true.
Then pi is true for all i ∈ N.

Proof. Suppose not, and let m ∈ N be the smallest natural number such that pm

is false. Then pi is true for all i < m. By (IS), pm is true, contradicting the
assumption. Thus pi is true for all i ∈ N. �

It is common in the statement of the strong induction principle to include the
base case (I1), that p0 is true, as a premise. We note that (I1) is implied by (IS),
but that (I2) is not implied by (IS) (why?).
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3. The Division Algorithm

Proposition 5. (Division Algorithm for Integers)
Let m,n ∈ Z with m 6= 0. There exist unique integers q, r ∈ Z such that

n = qm + r and 0 ≤ r < |m|.

We offer two proofs of this, one using the well-ordering principle directly, and
the other phrased in terms of strong induction.

Proof by Well-Ordering. First assume that m and n are positive.
Let X = {z ∈ Z | z = n − km for some k ∈ Z}. The subset of X consisting of

nonnegative integers is a subset of N, and by the Well-Ordering Principle, contains
a smallest member, say r. That is, r = n− qm for some q ∈ Z, so n = qm + r. We
know 0 ≤ r. Also, r < m, for otherwise, r −m is positive, less than r, and in X.

For uniqueness, assume n = q1m + r1 and n = q2m + r2, where q1, r1, q2, r2 ∈ Z,
0 ≤ r1 < m, and 0 ≤ r2 < m. Then m(q1 − q2) = r1 − r2; also −m < r1 − r2 < m.
Since m | (r1 − r2), we must have r1 − r2 = 0. Thus r1 = r2, which forces q1 = q2.

The proposition remains true if one or both of the original numbers are negative
because, if n = mq + r with 0 ≤ r < m, then 0 ≤ m− r < m when r > 0, and

• (−n) = m(−q − 1) + (m− r) if r > 0 and (−n) = m(−q) if r = 0;
• (−n) = (−m)(q + 1) + (m− r) if r > 0 and (−n) = (−m)q if r = 0;
• n = (−m)(−q) + r.

�

Proof by Strong Induction. Assume that m and n are positive.
If m > n, set q = 0 and r = n. Otherwise, we have 0 < m < n. Proceed by

strong induction on n. Here we assume that the proposition is true for all natural
number less that n, and show that this implies that the proposition is true for n.
Then, by the conclusion of the Strong Induction Principle, the proposition will be
true for all natural numbers n.

Note that n = m + (n−m) and n−m < n, so by induction, n−m = mq1 + r
for some q1, r ∈ Z with 0 ≤ r1 < m. Therefore n = m(q1 + 1) + r1; set q = q1 + 1
to see that n = mq + r, with r still in the range 0 ≤ r < m.

The proof for uniqueness and the cases where m and/or n are negative are the
same as above. �
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4. The Euclidean Algorithm

Definition 1. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

The next proposition says that the relation “divides” is a partial order on the
set of positive integers.

Proposition 6. Let a, b, c ∈ N be positive. Then
(a) a | a;
(b) a | b and b | a implies a = b;
(c) a | b and b | c implies a | c.

Proof. Exercise. �

Definition 2. Let m,n ∈ Z be nonzero. A greatest common divisor of m and n,
denoted gcd(m,n), is a positive integer d such that

(1) d | m and d | n;
(2) e | m and e | n implies e | d, for all e ∈ Z.

Proposition 7. (Euclidean Algorithm for Integers)
Let m,n ∈ Z be nonzero. Then there exists a unique d ∈ Z such that d = gcd(m,n),
and there exist integers x, y ∈ Z such that

d = xm + yn.

Proof. Let X = {z ∈ Z | z = xm + yn for some x, y ∈ Z}. Then the subset of X
consisting of positive integers contains a smallest member, say d, where d = xm+yn
for some x, y ∈ Z.

Now m = qd + r for some q, r ∈ Z with 0 ≤ r < d. Then m = q(xm + yn) + r,
so r = (1− qxm)m + (qy)n ∈ X. Since r < d and d is the smallest positive integer
in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k, l ∈ Z. Then d =
xke + yle = (xk + yl)e. Therefore e | d. This shows that d = gcd(m,n).

For uniqueness of a greatest common divisor, suppose that e also satisfies the
conditions of a gcd. Then d | e and e | d. Thus d = ie and e = jd for some i, j ∈ Z.
Then d = ijd, so ij = 1. Since i and j are integers, then i = ±1. Since d and e are
both positive, we must have i = 1. Thus d = e. �

Proposition 8. Let m,n ∈ Z be nonzero and suppose that there exist integers
x, y ∈ Z such that xm + yn = 1. Then gcd(m,n) = 1.

Proof. Exercise. �

Proposition 9. Let m,n ∈ N be nonzero and suppose that m | n. Then
gcd(m,n) = m.

Proof. Exercise. �
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5. Euclidean Algorithm in Practice

There is an efficient effective procedure for finding the greatest common divisor
of two integers. It is based on the following proposition.

Proposition 10. Let m,n ∈ Z be nonzero, and let q, r ∈ Z such that n = qm + r.
Then gcd(n, m) = gcd(m, r).

Proof. Let d = gcd(n, m). We wish to show that d = gcd(m, r), which requiring
that d satisfies the two properties of being the greatest common divisor of m and
r.

Since d = gcd(n, m), we know that d | n and d | m. Thus n = ad and m = bd
for some a, b ∈ Z. Now r = n −mq = ad − bdq = d(a − bq), so d | r. Thus d is a
common divisor of m and r.

Let e ∈ Z such that e | m and e | r. Then m = ge and n = he for some g, h ∈ Z,
so n = geq +he = e(gq +h); thus e | n, so e is a common divisor of n and m. Since
d = gcd(n, m), e | d. Therefore, d = gcd(m, r). �

Now let m,n ∈ Z be arbitrary integers, and write n = mq + r, where 0 ≤ r < m.
Let r0 = n, r1 = m, r2 = r, and q1 = q. Then the equation becomes r0 = r1q1 + r2.
Repeat the process by writing m = rq2+r3, which is the same as r1 = r2q2+r3, with
0 ≤ r3 < r2. Continue in this manner, so in the ith stage, we have ri−1 = riqi+ri+1,
with 0 ≤ ri+1 < ri. Since ri keeps getting smaller, it must eventually reach zero.

Let k be the smallest integer such that rk+1 = 0. By the above proposition and
induction,

gcd(n, m) = gcd(m, r) = · · · = gcd(rk−1, rk).
But rk−1 = rkqk + rk+1 = rkqk. Thus rk | rk−1, so gcd(rk−1, rk) = rk. There-
fore gcd(n, m) = rk. This process for finding the gcd is known as the Euclidean
Algorithm.

In order to find the unique integers x and y such that xm + yn = gcd(m,n), use
the equations derived above and work backward. Start with rk = rk−2− rk−1qk−1.
Substitute the previous equation rk−1 = rk−3 − rk−2qk−2 into this one to obtain

rk = rk−2 − (rk−3 − rk−2qk−2)qk−1 = rk−2(qk−2qk−1 + 1)− rk−3qk−1.

Continuing in this way until you arrive back at the beginning.
For example, let n = 210 and m = 165. Work forward to find the gcd:
• 210 = 165 · 1 + 45;
• 165 = 45 · 3 + 30;
• 45 = 30 · 1 + 15;
• 30 = 15 · 2 + 0.

Therefore, gcd(210, 165) = 15. Now work backwards to find the coefficients:
• 15 = 45− 30 · 1;
• 15 = 45− (165− 45 · 3) = 45 · 4− 165;
• 15 = (210− 165) · 4− 165 = 210 · 4− 165 · 5.

Therefore, 15 = 210 · 4 + 165 · (−5).
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6. Fundamental Theorem of Arithmetic

Definition 3. An integer p ≥ 2, is called prime if

a | p ⇒ a = 1 or a = p, where a ∈ N.

Proposition 11. (Euclid’s Argument)
Let p ∈ Z, p ≥ 2. Then p is prime if and only if

p | ab ⇒ p | a or p | b, where a, b ∈ N.

Proof.
(⇒) Given that a | p ⇒ a = 1 or a = p, suppose that p | ab. Then there exists
k ∈ N such that kp = ab. Suppose that p does not divide a; then gcd(a, p) = 1.
Thus there exist x, y ∈ Z such that xa+yp = 1. Multiply by b to get xab+ypb = b.
Substitute kp for ab to get (xk + yb)p = b. Thus p | b.
(⇐) Given that p | ab ⇒ p | a or p | b, suppose that a | p. Then there exists k ∈ N
such that ak = p. So p | ak, so p | a or p | k. If p | a, then pl = a for some l ∈ N,
in which case alk = a and lk = 1, which implies that k = 1 so a = p. If p | k, then
k = pm for some m ∈ N, and apm = p, so am = 1 which implies that a = 1. �

Proposition 12. Let n ∈ Z with n ≥ 2.
There exists a prime p ∈ Z such that p | n.

Proof. Proceed by strong induction on n. If n is prime, it divides itself; otherwise,
n is not prime, and n = ab for some a, b ∈ Z with a < n and b < n. By induction,
a is divisible by a prime, so n = ab is divisible by that prime. �

Proposition 13. (The Fundamental Theorem of Arithmetic)
Let n ∈ Z, n ≥ 2. Then there exist unique prime numbers p1, . . . , pr, unique up to
order, such that

n =
r∏

i=1

pi.

Proof. We know that n is divisible by some prime, say n = pm for some p, m ∈ Z
with p prime. Since m is smaller than n, we see that we can continue this process
until n is completely factored into primes. To see that this factorization is unique,
suppose that there exist prime p1, . . . , pr and q1, . . . , qs such that

n = p1p2 · · · pr = q1q2 · · · qs.

By repeatedly applying Euclid’s Argument, we see that p1 | qi for some i, and by
renumbering if necessary, we may assume that p1 | q1. Since q1 is prime, p1 = 1 or
p1q1; but p1 is also prime, so it is greater than 1; thus p1 = q1. Canceling these,
we see that p2 · · · pr = q2 · · · qs, and we may repeat this process obtaining p2 = q2,
p3 = q3, and so forth. We also see that r = s, for otherwise, we would obtain an
equation in which a product of primes equals one. �
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Proposition 14. Let P = {n ∈ Z | n is prime}. Then P is infinite.

Proof. Suppose that P is finite; then P = {p1, . . . , pr} for some primes pi. Set

n = 1 +
r∏

i=1

pi.

Clearly n > 1, so n is divisible by some prime p, and p = pi for some i. Thus p
divides n and

∏r
i=1 pi, so p divides 1 = n−

∏r
i=1 pi. But 1 cannot be divisible by

a prime, so we have a contradiction. �

We will have use for the following property later.

Proposition 15. Let a, b, c ∈ Z be nonzero such that gcd(a, b) = 1. If a | bc, then
a | c.

Proof. Suppose that a | bc. Without loss of generality, we may assume that a, b, c
are positive; in this case, we may proceed by induction on a.

If a = 1, the proposition is clear, so assume that a ≥ 2. In this case, there exists
such prime p such that p | a, which implies that p | bc. By Euclid’s argument,
either p | b or p | c. But if p | b, then p | gcd(a, b) = 1, which is impossible since
p ≥ 2. Thus p | c.

Now a = px and c = py for some x, y ∈ Z, and since a | bc, we have bc = az for
some z ∈ Z. Thus bpy = pxz, whence by = xz, and x | by.

Let e = gcd(x, b); then e | x, so e | a. Also, e | b, so e | gcd(a, b) = 1; this shows
that gcd(x, b) = 1.

Now x < a, gcd(x, b) = 1, and x | by. By induction, x | y, so y = kx for some
k ∈ Z. Thus a = px and c = pkx = pxk = ak. Therefore a | c. �

7. Exercises

Exercise 1. Use induction to prove that, for all n ∈ N,
n∑

i=1

i =
n(n + 1)

2
.

Exercise 2. Use induction to prove that, for all n ∈ N,
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Exercise 3. Use induction to prove that, for all n ∈ N,
n∑

i=1

i3 =
n2(n + 1)2

4
.

Exercise 4. Let a, b, c ∈ N be positive. Show that
(a) a | a;
(b) a | b and b | a implies a = b;
(c) a | b and b | c implies a | c.

Exercise 5. Let m,n ∈ Z be nonzero and suppose that there exist integers x, y ∈ Z
such that mx + ny = 1. Show that gcd(m,n) = 1.

Exercise 6. Let m,n ∈ N be nonzero and suppose that m | n.
Show that gcd(m,n) = m.



8

Exercise 7. Let m,n ∈ Z be nonzero. Use strong induction to show that there
exist x, y, d ∈ Z with d = gcd(m,n) such that

mx + ny = d.

Exercise 8. In each case, find d = gcd(m,n), and find x, y ∈ Z such that

mx + ny = d.

(a) m = 75, n = 300
(b) m = 123, n = 248
(c) m = 528, n = 71
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